Adaptive discretization of an integro-differential equation with a weakly singular convolution kernel
نویسندگان
چکیده
An integro-differential equation involving a convolution integral with a weakly singular kernel is considered. The kernel can be that of a fractional integral. The integro-differential equation is discretized using the discontinuous Galerkin method with piecewise constant basis functions. Sparse quadrature is introduced for the convolution term to overcome the problem with the growing amount of data that has to be stored and used in each time-step. A priori and a posteriori error estimates are proved. An adaptive strategy based on the a posteriori error estimate is developed. Finally, the precision and effectiveness of the algorithm are demonstrated in the case that the convolution is a fractional integral. This is done by comparing the numerical solutions with analytical solutions. 2003 Elsevier B.V. All rights reserved.
منابع مشابه
A Compact Scheme for a Partial Integro-Differential Equation with Weakly Singular Kernel
Compact finite difference scheme is applied for a partial integro-differential equation with a weakly singular kernel. The product trapezoidal method is applied for discretization of the integral term. The order of accuracy in space and time is , where . Stability and convergence in norm are discussed through energy method. Numerical examples are provided to confirm the theoretical prediction ...
متن کاملWavelet-based numerical method for solving fractional integro-differential equation with a weakly singular kernel
This paper describes and compares application of wavelet basis and Block-Pulse functions (BPFs) for solving fractional integro-differential equation (FIDE) with a weakly singular kernel. First, a collocation method based on Haar wavelets (HW), Legendre wavelet (LW), Chebyshev wavelets (CHW), second kind Chebyshev wavelets (SKCHW), Cos and Sin wavelets (CASW) and BPFs are presented f...
متن کاملApplication of Tau Approach for Solving Integro-Differential Equations with a Weakly Singular Kernel
In this work, the convection-diffusion integro-differential equation with a weakly singular kernel is discussed. The Legendre spectral tau method is introduced for finding the unknown function. The proposed method is based on expanding the approximate solution as the elements of a shifted Legendre polynomials. We reduce the problem to a set of algebraic equations by using operational matrices....
متن کاملA spectral method based on Hahn polynomials for solving weakly singular fractional order integro-differential equations
In this paper, we consider the discrete Hahn polynomials and investigate their application for numerical solutions of the fractional order integro-differential equations with weakly singular kernel .This paper presented the operational matrix of the fractional integration of Hahn polynomials for the first time. The main advantage of approximating a continuous function by Hahn polynomials is tha...
متن کاملA second-order accurate numerical method for a semilinear integro-differential equation with a weakly singular kernel
We study a generalized extrapolated Crank–Nicolson scheme for the time discretization of a semilinear integro-differential equation with a weakly singular kernel, in combination with a space discretization by linear finite elements. The scheme uses variable grids in time to compensate for the singular behaviour of the exact solution at t = 0. With appropriate assumptions on the data and assumin...
متن کامل